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Chapter 1

Introduction

Distributed applications have become increasingly popular during the last few
years for a number of reasons. But today distributed systems also have one
major drawback that limits scalability and sometimes even feasibility of perfor-
mance critical tasks: communication overhead. A remote procedure call (RPC)
is signi�cantly more expensive than a local procedure call. Which means that
mostly problems that allow batching of communication i.e. where multiple re-
quests can be sent at once and can be performed without further communication,
are implemented as distributed systems.

This has been the case since distributed systems were �rst developed, even
though networking technology has advanced signi�cantly since then. Bandwidth
for example increased by more than 3 orders of magnitude over the last three
decades. But often those problems that require frequent communication don't
transport much data in a message, so that bandwidth is not the limiting factor,
e.g. transporting 64 bytes over a 10Gbps link takes around 50ns so this results
in 100ns per round trip, while a RPC round trip time of 100us (RTT) for an
RPC of that size is realistic today. So the problem is high latency [20] which
has been reduced little more than one order of magnitude over the last three
decades.

While part of the problem has to be addressed by the hardware designers,
the software architecture including device drivers, operating systems and appli-
cations has to be optimized and potentially redesigned to achieve lower latency,
while most current implementations are focused on bandwidth.

In this thesis I will analyse the current Barrel�sh network stack, identify
sources of latency, and try to elliminate them (if possible). As part of this thesis
a driver for the Intel 82599 10Gbps network controller was developed, that is
able to bene�t from the hardware features provided by the network controller
that allow further optimization of latency. The primary goal is to reduce the
latency of an RPC using TCP/IP.
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Chapter 2

Related Work

Most of today's network stack implementations focus on achieving maximal
throughput. Rumble et al. [20] advocate improving latency and provides moti-
vating examples of systems that are limited by latency.

Latency is directly a�ected by the CPU load, if the CPU is occupied it will
take longer to react to events. One popular method to reduce the CPU load
caused by networking is o�oading. The idea is to o�oad parts of the network
stack onto the network interface controller. Examples of o�oaded features are
TCP segmentation in the transmitter and receiver-side coalescing of TCP seg-
ments, another or checksumming (both IP and TCP/UDP). J.C. Mogul [12]
looks at o�oading and the situations in which it is useful and can actually
enhance performance, and at the problems it presents.

The opposite of o�oading is onloading [18]. In contrast to o�oading the
network packet processing is not o�oaded onto the network interface controller,
but on another general purpose CPU, which does nothing else, called the pro-
tocol processing engine or PPE. Since the PPE doesn't have any other tasks,
the overhead from scheduling and interrupt processing can mostly be avoided.

Oritz et al. [14] look at methods to reduce overhead and increase throughput
in modern multicore systems. While the emphasis lies in comparing o�oading
to onloading and theoretical analysis which method performs better under which
workloads, the paper also summarizes most of the past research on networking
overhead which includes most of the literature presented in this section.

2.1 User-level networking

One approach to reduce overhead that has come up repeatedly over the past
years is user-level networking. The idea behind user-level networking is to elim-
inate the overhead of copying the data around through various bu�ers in the
networking stack and to the application by giving the applications direct access
to the network interface. This gives the applications quite a lot of �exibility
concerning protocol processing and bu�er management. But it also introduces
some di�culties that have to be overcome, since a network interface is gener-
ally accessed by multiple applications that shouldn't interfere with one another
for security and fairness reasons. Another challenge is a direct result of DMA,
since the network interface controller can write its data directly into memory,
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the application has to be prevented from accessing memory that it does not have
access to. The following literature elaborates on these problems and proposes
di�erent approaches.

2.1.1 Osiris

The �rst article (of those listed in this section) mentioning the idea of allowing
applications to access the network interface in order to enhance performance was
written by Druschel Peterson and Davie [5]. It uses the Osiris ATM network
adapter to implement and benchmark user-level networking using an alternative
�rmware for the adapter. Since ATM is based on virtual circuits they provide
an obvious criterion to (de)multiplex the interface to the di�erent applications.
One mechanism used to reduce overhead is to minimize interrupts (almost no
interrupts on the transmit path, and heavily reduced interrupts on the receive
path) by introducing a completion queue in addition to the send and receive
queues.

2.1.2 U-Net

U-Net [23] is also based on ATM. It introduces the idea to provide both hardware
and emulated software endpoints, since the hardware endpoints are scarce and
not all applications need the superior performance. The topic of implementing
TCP/IP using this architecture is also brie�y addressed.

2.1.3 Arsenic

Since the Arsenic [15] gigabit ethernet network interface controller is not based
on ATM as the previous approaches, the choice of how to (de)multiplex the
packets is less clear. The proposed solution are �lters to be installed onto NIC,
that decide which packets go to which virtual interface. Arsenic also supports
tra�c shaping and scheduling, to ensure fairness.

2.1.4 VIA

In contrast to the other architectures mentioned above, the virtual interface
architecture [7] is not speci�ed with one concrete network technology in mind,
instead it is used as a basis for several networks like In�Band and iWARP.
VIA is connection oriented and allows the application to choose from di�erent
reliability levels and o�ers features like remote DMA (RDMA).

2.2 Low-level optimizations

While the optimizations presented in the previous paragraphs focus on the need
to process every packet in a central instance (either a network server in the user-
space or an implementation of the network stack in the kernel), the literature
presented in this paragraph looks at optimizations that can be applied regardless
of where the packets are being processed.

Huggahalli et al. [8] present a technique called direct cache access and its
use in networking are discussed. The basic idea is to give the network interface
controller the possibility to transfer incoming data directly to the CPU cache
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since it will probably be accessed soon when the packet is processed by the
network stack. If the written data is accessed while it is in the cache, the latency
is reduced in two places, �rst copying the data to memory by the NIC has been
avoided, and second there are no cache misses when the data is accessed. The
paper analyzes in which situations DCA can improve performance. Since the
hardware used in their benchmarks is similar to our hardware for this thesis,
speci�cally 10Gbps Ethernet attached over PCI express, the presented results
can be expected to apply to our hardware as well.

One article that discusses techniques and optimizations to improve latency
in the network stack implementation were explored by Mosberger et al. [13].
While some of the techniques described might not apply to current hardware
since the article optimizes for the DEC Alpha architecture, others can probably
be adapted to today's CPUs.
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Chapter 3

Background

3.1 Barrel�sh

Barrel�sh is based on a multikernel architecture [2], which basically means that
there is a microkernel running on each core that does not share any state with
the kernels on the other cores, so the machine is regarded as a distributed
system. The cores or CPUs don't have to be identical, one motivation for this
architecture is to support heterogeneous architectures. The kernel or CPU driver
as it is called, is the only code that is executing in kernel mode (or ring 0 in x86
terminology). It is supported by the so called monitor service on each core that
is responsible for coordinating the rest of the system, including communications
with other cores.

3.1.1 Capabilities

As in many microkernels memory and other system resources as dispatchers
(kernel threads in Barrel�sh terminology) are managed by the user space and
the kernel merely provides the necessary mechanism. Barrel�sh uses a capability
based approach [22].

3.1.2 Inter-dispatcher communication

The di�erent services and applications running on top of Barrel�sh need a way
to communicate with each other. This mechanism is called inter-dispatcher
communication or IDC [1] and provides message passing, and is provided using
multiple backends that handle di�erent situations such as inter-core communi-
cation (UMP) versus core-local communication (LMP). LMP stands for local
message passing and is similar to the interprocess communication mechanisms
o�ered by many microkernels such as L4 [10] using a system call. Communica-
tion between dispatchers on di�erent core on the other hand is handled mainly
in user space, in a shared memory region as used by URPC [4].

Depending on the backend used the sender of a message can also send some
capabilities along with a message (not all capabilities can be transfered). This
makes it possible to share e.g. memory regions with other protection domains.

IDC interfaces are speci�ed in a domain speci�c language called Flounder
(documented in Barrel�sh technical notes) and are compiled into stub code that
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allows them to be used in a clean manner independent of the backend used for
a particular message. Flounder uses the remote procedure call abstraction.

3.2 Original network stack

The Barrel�sh network stack is based on an exokernel architecture, meaning
that most of the network functionality is provided by the lwip [6] library (could
also be replaced by another library, or the application could provide its own
implementation) running in the address space of every application that uses
networking. To coordinate the applications the netd [17] service coordinates
access to ports, and performs some other system wide network services. In
every Ethernet device driver there is an instance of the ethersrv library running,
that interfaces between the system and the driver and distributes packets to the
applications using the bulk transfer mechanism [21].

Application

netd Driver

Register Buffers
Packets

Net Information
Port Management

Filter Management

Control Path Critical Path

lwip

lwip

Figure 3.1: Original architecture overview

3.2.1 Network card driver

In the original architecture the device driver for the Ethernet card just passes
packets from the ethersrv library to the device and vice versa. In the initializa-
tion phase the driver registers callbacks to get the MAC address, send a packet
and to remove sent packets from the transmit queue.

For sending bu�er chains representing the packets are provided by the library,
and can (if the device supports it) directly be inserted into the transmit ring
bu�er of the device. After the packet is sent the driver noti�es the library so
it can release the bu�er. On the receiving side the driver allocates bu�ers and
noti�es the library whenever a packet arrives, after which the bu�er can be
inserted again into the receive queue.

With modern network hardware that does not require physically contiguous
memory, this allows for a straight forward driver implementation, that basically
just manages the receive and transmit queues and handles interrupts.

ethersrv library

The ethersrv library takes care of interfacing with the rest of the system. To
that end it provides two IDC interfaces, called ether and ether_control. The

8



ether interface is used by every client that transfers data over the network, while
ether_control is only available to netd mainly for �lter management. Listing
3.1 shows the most interesting parts of the Flounder interface de�nitions, for
both of these interfaces.

i n t e r f a c e e the r "Generic Ethernet Dr iver " {
c a l l r e g i s t e r_bu f f e r ( cap buf , cap sp ,

u int64 s l o t s , u int8 r o l e ) ;
c a l l get_mac_address ( ) ;
c a l l sp_notif ication_from_app ( uint64 type ,

u int64 t s ) ;
r e sponse sp_not i f i cat ion_from_dr iver ( u int64 type ,

u int64 t s ) ;
} ;

i n t e r f a c e ether_contro l "Generic Ethernet Control " {
c a l l reg i s ter_f i l te r_memory_request ( cap mem) ;
c a l l r e g i s t e r_ f i l t e r_ r e qu e s t ( u int64 id ,

u int64 len_rx , u int64 len_tx ,
u int64 buf_rx , u int64 buf_tx ,
u int64 f i l t e r_type , . . . ) ;

c a l l d e r e g i s t e r_ f i l t e r_ r e qu e s t ( u int64 f i l t e r_ i d ) ;
c a l l pause ( u int64 f i l t e r_ i d , u int64 buf_rx , u int64 buf_tx ) ;
c a l l unpause ( u int64 f i l t e r_ i d ) ;

} ;

Listing 3.1: Original ethersrv interfaces

When sending a packet the physical address of the bu�ers sent by the appli-
cation can directly be inserted into the transmit queue. For receiving the driver
has to register its own bu�ers, and when a packet arrives the data is copied out
of the bu�er by the ethersrv library.

To determine to which application or more precisely into which bu�er a
packet is copied (demultiplexing), netd can register �lters [3]. Those �lters are
represented by byte code that is interpreted by a virtual machine when applying
the �lter to a packet. Filters are at the moment only applied to incoming
packets, outgoing packets are not �ltered yet. The driver itself does not have
to worry about �ltering. netd registers these �lters using a shared memory
region it registered during initialization and a noti�cation message, both using
the ether_control interface. The following �lter types are currently used:

• TCP/UDP port

• TCP connection (source and destination port and ip)

• ARP packets (forwarded to all clients)

One thing that makes �ltering more complicated is IP fragmentation, since
that leads to the L4 headers not being in every packet relevant to the �ow. The
current solution is to handle this special case in the ethersrv library by keeping a
list of fragment �lters that move the packets to the correct bu�er, in some cases
the fragments are bu�ered there until the packet with the full header arrives
(out of order reception).

Another architectural quirk is caused by the emulation of some POSIX be-
haviour for network connections if fork is used. To be able to support applica-
tions that use fork to spawn workers for incoming TCP connections, a combina-
tion of the pause methods and TCP connection �lters is used to �rst hold back
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the relevant packets until the child has initialized its networking stack, and then
redirect the incoming packets.

Transfer of packets to and from applications is implemented using the Bar-
rel�sh bulk transfer mechanism, which requires a shared bu�er per queue shared
between the application and the driver registered using the ether interface. Also
required for the bulk transfer mechanism to work are noti�cation messages over
IDC in both directions, they too are in the ether interface.

3.2.2 netd

Basically netd has two di�erent duties, it manages access to ports by applications
and performs system wide networking services including initialization of the
network interface (DHCP) and handling all packets not handled by anyone else.
An IDC interface called netd (Listing 3.2) provides networking information like
IP and MAC address of the interface, and allows other applications to request
ports.

i n t e r f a c e netd "Network Daemon" {
rpc get_ip_info ( out ipv4addr ip ,

out ipv4addr gw ,
out ipv4addr mask ) ;

rpc get_mac_address ( out u int64 hwaddr ) ;
rpc get_port ( in port_type type ,

in bu f id id_rx , in buf id id_tx ,
out e r r v a l err , out u int16 port ) ;

rpc bind_port ( in port_type type , in u int16 port , . . . ) ;
rpc c lose_port ( in port_type type , in u int16 port , . . . ) ;

} ;

Listing 3.2: Original netd interface

Access control to ports by netd ensures that there are no con�icts between
multiple applications that use the same port. There is also a function to allocate
any free port (e.g. for TCP client connections). When a port is assigned to
an application, netd generates a �lter for that port and registers it using the
ether_control interface.

As mentioned above netd also performs network services that are not speci�c
to a speci�c application. This includes responding to ARP requests of other
machines, and handling ICMP packets. Those services are performed using
lwip, which in the case of netd gets all incoming packets not handled by anyone
else.

3.2.3 Application

An application that wants access to the network (be it as a client or as a server)
needs connections to two services, netd and the network card driver. At the
moment the network stack used is the lwip library, but any implementation
could be used here, the application could also interface directly with the two
services.

After connecting to the card driver two bu�ers are registered with the driver,
one for receive and one for transmit. Those bu�ers are managed using the bulk
transfer mechanism.
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Communication with netd is only required for management tasks such as
initialization or requesting a new port. Other than that all communication
concerning packet transfer happens directly with the card driver.

lwip library

lwip is currently the default network stack used in Barrel�sh. It includes a full-
featured TCP/IP implementation as well as other protocols, e.g. DHCP. On
the client side it provides the well known BSD socket interface for compatibility,
and also a native interface that allows for more e�cient and sometimes more
controlled operation. To send and receive packets it also interfaces with the
card driver and for management with netd, as mentioned above.

pbufs, the mechanism lwip uses for internal bu�ers (similar to BSD's mbufs),
reference memory directly in the bulk transfer bu�ers (see below), so they can
be sent/received without copying. But if the traditional socket interface with
send()/recv() is used, the data has to be copied between the speci�ed bu�er
and the pbuf. The native interface uses multiple call-backs (e.g. for data re-
ception, with a pbuf as a parameter) and allows the application to take control
of bu�er management. In the current implementation there is a limitation that
makes allocation of a new pbuf and copying of the data into it necessary, even
if it was in a pbuf before.

3.2.4 Bulk transfer mechanism

The transfer of packets to and from the network card driver uses the bulk trans-
fer mechanism, which is a library that implements a solution to the producer-
consumer problem that allows zero-copy data transfer between two protection
domains (address spaces) in Barrel�sh using a shared memory range. In the
context of networking two bulk transfer bu�ers are used, for the receive side the
card driver assumes the role of the producer and the application is the consumer,
for transmit they switch roles.

A bulk transport bu�er is divided into multiple components, the two most
important ones are the shared pool where the packet data goes and the con-
sumer queue which is a ring bu�er used for communication between producer
and consumer. Multiple shared pools in di�erent memory regions can be used
in connection with one consumer queue. The basic operation of the bulk trans-
fer mechanism is similar to modern network cards that use descriptor rings to
manage their queues. The memory in the shared pool is managed by the pro-
ducer. The main di�erence is that the entries in the consumer queue do not
point directly to physical memory but into the shared pool, more precisely to a
slot in the shared pool. A slot is a piece of memory in the shared pool of �xed
size. In the consumer-queue there are two sets of elements (slot-pointers), those
that have been produced and await to be consumed and the other set consists of
those elements that have been consumed and the consumer is done with. Note
that the consumer does not have to return the consumed elements in the order
it consumes them, but can keep each slot for an arbitrary timespan.
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Demultiplexing

As also discussed in the technical note [21] there exists a trade-o� between
security/privacy and performance, especially if the data comes from hardware
that just blindly puts its data into the next provided bu�er. To achieve true
zero-copy all the clients need to have access to one (or multiple bu�ers) into
which the device copies its data, and it can be decided afterwards to which
client the data goes, which means that those clients are not shielded properly
and could see data of other clients. Depending on the concrete use-case that can
be acceptable or not, if not there is no way around a copy from some internal
bu�er.

The current ethersrv receive code uses the secure method with separate
bu�ers and copies once the packet is received and �ltered. For transmit this is
not an issue since we do not have to demultiplex so there copies can be avoided.
Also note that the data can only be exchanged using the shared pool(s), so if the
source/destination (depending on the direction of the transfer) in the application
is not in the shared pool a copy is necessary (discussion about interfaces to lwip
in previous section).

3.2.5 Critical path

The critical path for packet reception and transmission is highlighted in �gure
3.1. As described in the previous sections it only involves the application send-
ing/receiving the packet and the driver for the network card on the software side.
The following lists explain the sequence of events when receiving a packet and
sending a reply (only the range of events that contribute to the latency) under
the condition that the queues are empty and that there is no other tra�c and
both the driver and the application are on the same core. We assume that the
application uses the native lwip interface (exactly as the Barrel�sh application
echoserv does).

• Driver receives interrupt signalling newly arrived packet.

• Driver �nds packet in queue and passes data to ethersrv library.

• ethersrv library applies multiple �lters (IP fragment, application packet,
ARP packet) and our packet matches as an application packet.

• ethersrv library copies packet into a slot in the bulk transfer bu�er deter-
mined by �lter.

• ethersrv library adds slot to consumer-queue.

• ethersrv library signals application that there is a new packet in consumer-
queue.

• Context switch to application

• lwip glue code checks consumer-queue for new packets.

• lwip glue code �nds new packet and passes it to lwip.

• lwip processes packet and passes the modi�ed pbuf to the application.
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Packet transmission includes basically the same steps except for the demul-
tiplexing part in di�erent parts. After the processing by lwip the packet data is
not accessed by the CPU anymore

• Application instructs lwip to send the reply using a new pbuf (copy of
data necessary).

• lwip generates new packet and passes it to glue code.

• lwip glue code �ushes packet contents from cache to main memory.

• lwip glue code calculates slot for pbuf and inserts it into the consumer-
queue for transmit.

• lwip glue code signals driver that there is a new packet in consumer-queue.

• Context switch to driver

• ethersrv library checks consumer-queue for new packets.

• ethersrv library �nds new packet records some internal information and
passes it to the driver.

• Driver adds descriptor for packet to transmit queue (and records some
internal information to pass on to the ethersrv library when transmit is
done).

3.3 Network controller

This section will provide an overview over the network controller used, Intel
82599EB [9], and the features provided focussing on those that are potentially
useful to reduce latency. As already described in the introduction this controller
supports 10 Gbps Ethernet and on the other side PCI express 2.0, one PCI func-
tion per device (changes when virtualization is used, see below). The interface
used by the driver consists of a memory region containing a set of memory
mapped registers, where a number of other memory regions can be con�gured
by the driver e.g. for descriptor rings.

3.3.1 Multiple queues

One of the features that distinguishes this controller from common cheap 1
Gbps controllers is the support for multiple hardware queues, 128 receive and
128 transmit queues. Those queues are managed using descriptor rings in host
memory as they can be found in most modern network cards (e.g. Intel e1000
cards). A queue ring consists of a con�gurable number of descriptors of 16 bytes
each, where the concrete format depends on the queue type (receive/transmit)
and the con�guration (advanced/legacy descriptors). The advanced descriptor
format is required for multiple features (such as several o�oad features). To
maintain the queue once it is con�gured, there are two registers for queue head
and tail pointer, or more correctly head and tail index, where the head index is
written by the device and the tail index by the driver.

In a receive queue the host just has to �ll in a bu�er address where the
controller puts the data, the bu�er size is con�gured globally for all descriptors
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in a queue (has to be a multiple of 1024). When a packet arrives the controller
copies the data in a sequence of bu�ers (as many as needed) and adds some
additional information to the descriptor, such as the length of the data copied
in the bu�er referenced and �ags such as "end of packet" that speci�es if a
descriptor is the last descriptor for a particular packet, and "descriptor done"
that indicates that the controller is done copying data to this particular bu�er.
Also after the card is done with a descriptor it increases the index value in the
queue head register.

A transmit queue operates in a similar manner as a receive queue. The main
di�erence is that in this case the host has to provide more information, instead
of just the address also a packet length has to be provided and some o�oad
features can be enabled on a per-packet basis (see below) and the controller ba-
sically just sets the "descriptor done" �ag after the packet is sent, and increases
the queue head register. There is also a feature called TX head pointer write
back that disables write back of TX descriptors entirely, instead a separately
con�gured location is updated with the new queue head index. This is useful
in combination with direct cache access (see below) to reduce cache thrashing
caused by hardware and software writing the same cache line modifying di�erent
descriptors.

Descriptor bu�ering

The controller has some on-die bu�er space for packets and descriptors, the exact
amount of bu�er space depends on the con�guration as other features use this
bu�er too (see information about �ow director �lters below). On the receive side
no descriptors are cached, they are fetched on demand after a packet is received
and written back immediately after the packet is copied to memory. For transmit
queues a policy for descriptor fetching and write back can be con�gured using
three di�erent values PTHRESH, HTHRESH and WTHRESH. Descriptors are
always fetched if the queue is empty and the software writes the tail pointer,
if the queue was not empty and some bu�ers are cached a descriptor pre-fetch
operation is started if there are less than PTHRESH descriptors bu�ered and
more than HTHRESH ready descriptors in host memory. Write back occurs
if at least WTHRESH descriptors have accumulated or if a con�gured timer
expires. Note that there is a trade-o� between low latency and PCI express bus
overhead. To keep latency as low as possible it is desirable to fetch as many
bu�ers in advance as possible as soon as they are available (PTHRESH maximal,
HTHRESH minimal), and write them back immediately after the controller is
done with them (WTHRESH minimal). But frequent write backs also generate
load for the PCI express bus, which can be reduced by combining as many
descriptors as possible into one fetch/write back.

Queue assignment

To assign packets incoming packets to di�erent queues (see �gure 3.2), several
di�erent �lter types are available. The following list provides an overview in the
same order as they are applied (�rst �lter that matches is used, after that no
other �lters are checked):

1. L2 Ethertype �lters
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Figure 3.2: Hardware demultiplexing

2. L3/L4 5-tuple �lters

3. TCP SYN �lter

4. Flow director �lter (con�gurable number)

5. Receive side scaling (RSS)

Note that the matching order of the SYN �lter and 5-tuple �lters can be
con�gured to be the other way around.

L2 Ethertype The 8 L2 Ethertype �lters assign a queue id based on layer 2
information such as the type �eld in the Ethernet frame. Could for example be
used to �lter ARP packets into one queue.

L3/L4 5-tuple More use for most applications can be gained from the 128
5-tuple �lters. These �lters allow packets to be �ltered based on L3 information
such as source and destination IPv4 address, L4 protocol (TCP, UDP or SCTP),
and the L4 protocol �elds for source and destination port. For each �lter a mask
can be con�gured that speci�es which of those �elds should be matched, so a
�lter can be set up that matches all packets from any source IP or port to a
speci�c destination port. There is also a 3 bit priority �elds that allow the �lters
to be ordered in case multiple �lters match.

TCP SYN This �lter matches all TCP packets that have the SYN �ag set,
i.e. new TCP connections.

Flow director The �ow director mechanism allows by far the most �lters to
be registered. It can be con�gured in two modes, perfect match and hashing, the
�rst one allows up to 8K �lters to be registered while the hash mode allows up
to 32K �lters. But those �lters are stored in the on-chip bu�er that is also used
for packets and descriptors, so if more �ow director �lters are enabled less space
is available for packet and descriptor bu�ering. They allow matching based on
the same properties as the 5-tuple �lters, plus some additional ones such as IPv6
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addresses and a �exible 2 byte �eld whose o�set can be con�gured. In contrast
to the 5-tuple �lters the �ow director �lters only allow the mask �ags (and the
o�set for the �exible 2 byte �eld too for that matter) to be con�gured globally
for all �lters.

The two modes di�er in how the �lters are con�gured and how they are
matched. For both modes they are stored in a hash table using bucket hashing.
In hash mode only a hash and an action that is executed in case of a match
(includes a queue id) have to be registered for a �lter, and also the �lters are
only compared based on the hash, while in perfect match mode �rst a hash is
used to �nd a bucket and then the �elds are compared directly hence the values
for those �elds have to be speci�ed when adding a �lter.

Receive side scaling Recieve side scaling or RSS is not used to direct speci�c
packets to speci�c queues, but rather for load balancing between multiple queues
that are used by multiple cores. It works by �rst calculating a hash over multiple
prede�ned protocol �elds in the packet, after that this hash is used to lookup
a queue id for that hash in a small lookup table (128) entries that contain the
queue id, but supports only 16 queues.

Virtualization

Especially for use in virtual machines the controller can be divided in multiple
isolated virtual devices, which appear to the host as separate PCI functions
(called virtual functions). Aside from providing independent interfaces for the
virtual machines, the division into multiple PCI functions allows the IOMMU
(in Intel terminology VT-d) of modern CPUs/chipsets to be used, to make
sure the virtual machine only has access to physical memory it actually owns.
The registers available in the virtual functions are mainly equipped for queue
management and provide a mailbox mechanism to communicate with the driver
for the physical function, for management tasks such as �lter registrations.

When virtualization is enabled the 128 queues are divided into a �xed num-
ber of equally sized pools, which can be con�gured to be either 16, 32 or 64.
Incoming packets are routed to a pool based only on L2 characteristics such as
MAC address or VLAN tags, the higher layer �lters described above can only
be used to select into which queue a packet is stored inside a pool. Packets can
be assigned to multiple pools at the same time.

3.3.2 O�oading

The controller also provides a number of features that o�oad some protocol
processing tasks such as calculating checksums for TCP or UDP packets both
for checking it on receive and for �lling it in when sending packets. TCP large
segment o�oad (TSO) allows the network stack to add TCP packets to the
transmit ring that are too big to be sent in a single Ethernet frame (up to
256 KB), so the network controller has to send them as multiple packets (TCP
segments), which includes keeping track of sequence numbers of each packet,
as well as calculating checksums on multiple layers. The counterpart on the
receive side is receive side coalescing which allows the network controller to
merge multiple packets (TCP segments) belonging to the same TCP connection
into one or multiple bu�ers. Another o�oading feature provided is header split,
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where the packet header and payload can be put into di�erent bu�ers when
receiving a packet, here the following packet types are supported Ethernet,
IPv4 and IPv6, TCP, UDP and even NFS.

3.3.3 Interrupts

Multiple interrupt con�gurations are supported, on one hand the controller can
use a single legacy PCI interrupt or a single MSI, on the other hand if MSI-X
is used, up to 64 di�erent interrupt vectors can be con�gured e.g. for di�erent
queues. Interrupt throttling reduces the rate at which interrupts are generated,
which allows multiple packets to be processed per interrupt and thus reduces
CPU load since every interrupt causes CPU overhead. To that end a time
interval can be con�gured that speci�es the time minimal time interval between
two interrupts (only applies to receive and transmit interrupts).

Since not all connections or packet types are equally sensitive to latency, a
mechanism called low latency interrupts (LLI) is provided, that allows speci�c
packets to trigger interrupts immediately. Some of the �lters above (such as
Ethertype �lters or 5-tuple �lters) can enable LLIs for speci�c packets. Low
latency interrupts can also be controlled by a moderation mechanism. This
mechanism uses credits that are decreased for each LLI, if the credit counter
reached zero the interrupt is delayed. An interval has to be con�gured that con-
trols how often the counter is increased to allow additional low latency interrupts
for that queue.

Note that interrupt moderation is also necessary for receive side coalesc-
ing. If every incoming TCP segment triggers an interrupt the controller has no
opportunity to merge multiple segments.

3.3.4 Direct cache access

In traditional settings packet data that is generated by a device has to be written
directly to main memory and the CPU has to read it from there without using
caches. Direct cache access [8] allows a device to write data directly into the
CPU cache. This reduces the memory latency when the packet contents or
descriptors are �rst accessed by the driver or network stack.

Since the transmit queue is mostly very short in low to medium loads, cache
thrashing can occur if both the head and tail pointers point to descriptors in
the same cache line, which in turn causes multiple writes to the same cache line
by the CPU and the network controller. In the receive queue there is usually a
large number of bu�ers, so there that problem does not occur. As mentioned
above TX head pointer write back can be used to resolve this problem.
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Chapter 4

Approach

This chapter provides an overview over the original Barrel�sh network stack,
analyses (some of) its limitations and discusses possible improvements. The
e10k driver used for the pro�ling of the existing code, only uses basic hardware
features required to send and receive packets, using just one hardware queue for
both directions.

4.1 Sources of latency

To get some indication where the time is spent when sending and receiving
packets, this section presents pro�ling results of the critical path.

4.1.1 Pro�ling results

For the results presented in this section the following setup was used on the
sbrinz1 machine : essential Barrel�sh services as well as netd, e10k driver and
net_latency running on core 0. net_latency was con�gured to generate 32
round trip runs (send packet and wait for reply) with 64 byte TCP packets.
The receiving side was on gottardo, running the same setup except echoserver
is running instead of net_latency. To get the desired results, the critical path
was annotated with trace events roughly corresponding to the items listed in
the previous section.

The total round trip time measured was 75.6µs Since we are interested in
where the time is spent in the network stack, only those two parts were analyzed
in the trace. The total time for transmit was 9.38µs, for receive it was 14.85µs
on average, more detailed results can be found in tables 4.1 and 4.2.

38% 3.63µs Remove packet from consumer queue
28% 2.52µs Context switch to driver for noti�cation
14% 1.35µs Protocol processing in lwip
12% 1.12µs Flush packet content from cache
8% 0.78µs Enqueue packet in consumer queue

Table 4.1: Time spent in di�erent parts of transmit code
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44% 6.46µs Enqueue packet in consumer queue
19% 2.77µs Copy packet into application bu�er
14% 2.13µs Apply �lters to select destination bu�er
10% 1.51µs lwip protocol processing
9% 1.36µs Context switch to application for noti�cation
4% 0.61µs Remove packet from consumer queue

Table 4.2: Time spent in di�erent parts of receive code

These results were obtained using the Barrel�sh trace library. This library
records the time-stamps of di�erent tracing events that can be generated using
a simple function call, and allows this trace to be dumped later. The output
consists of a tuple for each event consisting of core id time-stamp and an event id.
A simple test measuring the latency of the network stack with tracing enabled
and disabled showed that the overall latency is not noticeably in�uenced by the
tracing calls. So the results obtained using tracing can be regarded as accurate
enough for results in the order of magnitude expected here.

4.1.2 Analysis

Comparing both tables the most obvious result is that a lot of time is spent
on queue management for the bulk transfer mechanism, for both directions
handling the queue to add and remove packet together takes a major part of
the overall time. This was a rather surprising result, since it is basically just a
FIFO queue with one producer and one consumer and without large amounts
of data being copied. A closer look at the code for queue management showed
that there were a lot of mfence instructions (memory barriers), in the code that
enqueues a package from lwip for the transfer to the driver more than 30 such
instructions were executed (most of them useless if both ends are on the same
core). Also the code does a lot of redundant loads from shared registers in the
queue to local copies, and there is a number of sanity checks that should not be
necessary once the code works properly.

The context switch and noti�cation part is mostly explained by IDC over-
head and the TLB misses because of the TLB �ush that occurs on an address
space switch.

Receive path

On the receive path �ltering and packet copying is the next major part of the
latency. Not surprising those add up to about the di�erence between receive
and transmit since they are the only major di�erence. On th receive side part of
the problem turned out to be due to the packet bu�ers in which the packets are
received being mapped non-cacheable, which means that every memory access
on those bu�ers results in a cache miss, and those �lters access several locations
inside a packet. If this memory range is marked as cacheable, only the �rst
access should result in a cache miss, since the header should �t into one cache
line.

After the �lters are done and a target bu�er has been determined the packet
gets copied, which resulted in additional cache misses (Barrel�sh memcpy uses
8 byte units, i.e. 7 unnecessary cache misses on the source side), and also TLB
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misses assuming the driver is freshly scheduled. If both the card driver and
the application are on the same core, and assuming the application is scheduled
soon after receiving the packet it should at least �nd the received packet in its
bu�ers to still be in the cache. Last but not least copying also uses up additional
CPU time albeit not very much for small packets.

4.2 Reducing latency

The sources of latency discovered and analysed in the previous section provide
a reasonable starting point to look at possible optimizations. This section will
provide multiple suggestions on how latency can be reduced, not all of them will
necessarily be implemented later on.

4.2.1 Bulk transfer

Probably the most obvious part that needs optimizations is the code that inter-
acts with the bulk transfer mechanism and the implementation of the mechanism
itself. Code optimization by hand is one way to go here that should have some
potential, just disabling the memory barriers for test purposes (safe in our case)
cuts the time spent in the queue management code approximately in half, de-
pending on the machine. Removing some of the unnecessary checks (or at least
make them optional for debugging), as well as reducing the number of register
reloads to local copies should lower the latency noticeably.

IDC performance

The latency introduced by the bulk transfer mechanism also directly depends
on IDC latency (at least if there is not much tra�c, so the queue is empty long
enough) since noti�cations sent are based on IDC. Depending on the setup this
also includes context switches. If driver and application are on di�erent cores
so UMP can be used, all context switches can be avoided in the best case.

4.2.2 Demultiplexing

As described above software demultiplexing as it is done above has some non-
desirable e�ects, and it would be nice if the network controller could just copy
the packet into the right bu�er, so that it does not have to be copied afterward.
As described in [21] this can be achieved with the bulk transfer mechanism,
if multiple applications use the same shared pool for their received packets.
But using that approach we lose all separation between di�erent networking
applications in regard to privacy and data integrity.

One way to do this in a more safe manner is using multiple hardware queues
as they are o�ered by the 82599 controller, and use one queue per application
and only add its bu�ers to the receive ring. This implies also that the controller
needs to know the criteria for demultiplexing. Regrettably the �lters in the
network controller used here are much less �exible than the virtual machine
mechanism used in bfdmux [3] that is currently used, so they can't be mapped
directly.

20



Direct queue access

Another possibility to reduce latency even more would be to give the application
(or the lwip instance in it) direct access to the receive and transmit ring, and let
it insert its bu�er descriptors directly [5] [23] [15] [7]. In that case no commu-
nication with the driver would be necessary on the critical path, and the bulk
transfer mechanism would not even be used. Figure 4.1 provides a schematic
overview.

Application

netd cDriver

Net Information
Port Management

Filter Management

Control Path Critical Path

lwip

qDrv

Figure 4.1: Architecture overview with direct queue access

Unfortunately this introduces multiple problems. It compromises memory
protection since physical addresses have to be speci�ed in the receive and trans-
mit rings, so if a hostile (or buggy) application has access to that queue, it can
read or write any memory location, regardless of it is mapped into its virtual
address space or not. Another problem is that in order to maintain the queue
the tail register of the queue has to be written, but those registers are too close
together in the memory mapped region to be separated properly using paging.

Both problems would be solved if the virtualization feature is used, since it
provides a separate PCI function with a separate memory region for its registers,
which would also enable the use of the IOMMU, to control access to physical
memory. But this introduces another problem since packets can only be assigned
to a queue based on L2 criteria, and not the whole range of �lters.

A compromise that would allow at least to reduce the latency on the receive
side would be to map the queues read-only, and requiring bu�ers to be registered
using a driver. With that approach the application could at least detect when
a packet arrived, and directly process it, without context switches, same for
transmits that are �nished. This would allow the application to batch the
registration of receive bu�ers and amortise the cost for the context switch.

4.2.3 Cache optimizations

Because of the cache coherency guarantees provided by the platform, the bu�ers
used in the receive and transmit rings don't have to be mapped read-only, just
as the memory regions that contain the rings don't have to be either. Also
the packet contents don't need to be �ushed before a transmit, since the cache
coherency mechanism will take care of that. If the network controller can read
the data directly from the cache, the time savings are twofold, no time for an
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explicit �ush and no RAM access by the hardware.

Direct cache access

When caching of a memory region is enabled, and if the right hardware is
used, direct cache access can be used to optimize memory accesses further. As
described in the background chapter, DCA allows the network controller to
write its data directly into the CPU cache. This is especially useful for latency
sensitive applications that use small packets and access the packets soon after
they arrive [8]. With many large packets DCA can lead to cache thrashing,
and if the packets are not accessed shortly after they arrived, they might get
evicted from the cache again. Using DCA cache misses due to packet payload
or descriptor accesses can be eliminated entirely for many cases.

4.2.4 Interrupts

Interrupts are not really useful for low latency communication either, since
polling does not require a transition to kernel space and back. But they can be
used if CPU time or power consumption is too valuable to be wasted on polling
if for a longer time no packets arrive and a higher latency for the �rst packet
after that can be tolerated.

4.2.5 Other hardware features

There is a whole bunch of features mentioned in the background chapter and
even more that are not, are not really useful for reducing latency or might even
be contra productive since they optimize for bandwidth such as e.g. interrupt
throttling, or receive side coalescing. Also some of the o�oad features such as
TCP large segment o�oad are not intended for use with small packets (plus
TSO adds some initialization overhead when sending packets). Others such as
Header splitting simply don't �t into the Barrel�sh network stack architecture
because of the exokernel based approach.

But there are some other features worth looking at. That includes the de-
scriptor fetching mechanism described in 3.3.1 that can be con�gured for dif-
ferent performance characteristics. But that mainly matters when there is a
higher load of packets being sent and received.

4.2.6 Multi core optimizations

When multiple cores are available with complex cache hierarchies as they are
common in today's servers, the placement of di�erent system components on
di�erent cores becomes non-trivial. On one hand parallelism is helpful, but on
the other hand communication performance between di�erent components also
varies (such as slower access to devices or memory in di�erent NUMA nodes). To
optimize latency some benchmarking has to be done to reveal how the latency
behaves when components are moved around.

For example if the two ends of a bulk transfer consumer queue are on one
core noti�cations are sent using LMP requiring context switches, while if they
are on di�erent cores, those context switches can be avoided in some cases. But
in the worst case communication is more expensive.
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Chapter 5

Implementation

After the analysis of the original Barrel�sh network stack, this chapter will
present the modi�cations that were made to reduce latency, and the resulting
design.

5.1 Modi�ed network stack

The following section will describe the modi�ed network stack. Figure 5.1 pro-
vides an overview over the new architecture. From an architectural point of
view the most important change is that the e10k driver has been split up into
one card driver and multiple queue drivers each servicing one hardware queue.

Application

netd cDriver

Register Buffers
Packets

Net Information
Port Management

Filter Management

Control Path Critical Path

lwip

lwip

qDriver

Figure 5.1: Modi�ed architecture overview

5.1.1 Driver

To make the runtime con�guration as �exible as possible, the driver now consists
of multiple parts that run as independent processes. The card driver takes care
managing the hardware itself, basically everything that is not replicated with
the queues, and spawns a queue driver for each queue that is enabled. Filters can
be registered by the ethersrv library to assign packets to the di�erent queues.
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Queue drivers

The queue drivers register their memory regions that contain the descriptor
rings for receive and transmit with the card driver, which con�gures the device
registers accordingly. Also �lters for the di�erent queues are programmed by
the card driver, this eliminates synchronisation problems, since only one thread
accesses these registers, and needs to keep track

An alternative would be to use one driver with multiple threads, but since
not much communication is necessary between the components this would in-
troduce more problems than it solves. No synchronization primitives have to be
introduced, and independent processes also reduce overhead for managing the
address spaces of the drivers if they are distributed across multiple cores (e.g.
no TLB shoot downs). Explicit communication between a queue driver and the
card driver is possible using a private IDC interface. This interface is mainly
used for initialization (registering queue memory ranges etc.).

Interrupts

Interrupts are not used in the queue driver for multiple reasons. The main
problem is that Barrel�sh currently does not support MSI-X which would be
necessary to allow the network controller to use multiple interrupts. Without
multiple interrupts, either one driver has to forward interrupts to the others, or
they have to be broadcasted to all of them, both not optimal for low latency.

Filters

To control which packets go where, the card driver manages the �lters that
can be programmed into the network controller. As already discussed in the
background chapter, those �lters are not as �exible as the ones provided by
the bfdmux library, so the binary �lter format is not sensible as a basis to
con�gure the hardware. Instead the driver provides multiple types of �lters,
that correspond to their uses in netd:

• TCP/IPv4 connection with source and destination IPs and ports

• TCP server port

• UDP server port

In the current version those �lters are mapped down to the hardware using
the L3/L4 5-tuple �lters. These �lters are straight forward to program and
more �exible than the other choices. Another possible choice would have been
to use the �ow director �lters since they are available in a larger number, but
those are more complicated to program and use up bu�er space on the network
controller.

5.1.2 ethersrv library

The ethersrv library has been split up more clearly into two parts, one for man-
agement functions such as registering �lters, and the other one for data transfer.
Those two parts more or less correspond to the two interfaces provided by the
ethersrv library, ether and ether_control. In the case of e10k the ether interface
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is provided by each queue driver, while the control interface is provided by the
card driver, or more correctly by the ethersrv instances running in those drivers.
The ether interface has not been modi�ed signi�cantly, while the ether_control
interface looks quite di�erent. It provides new methods for queues management
and the methods for �lter registration have been modi�ed.

As already mentioned above, the bytecode interface for the �lters is not
practical for con�guring hardware �lters, so a number of methods has been
added to register di�erent types of �lters for a queue. Listing 5.1 provides an
overview of the most important aspects of the modi�ed ether_control interface.

i n t e r f a c e ether_contro l "Generic Ethernet Control " {
c a l l get_mac_address ( ) ;

c a l l request_queue ( queueid id , u int8 core ) ;

c a l l f i l t e r_reg i s t e r_ipv4_tcp_por t ( queueid id ,
l 4po r t port ) ;

c a l l f i l t e r_reg i s ter_ipv4_udp_port ( queueid id ,
l 4po r t port ) ;

c a l l f i l t e r_reg i s te r_ipv4_tcp_conn ( queueid id ,
ipv4addr loca l_ip ,
l 4po r t loca l_port ,
ipv4addr remote_ip ,
l 4po r t remote_port ) ;

c a l l d e r e g i s t e r_ f i l t e r ( f i l t e r i d id ) ;
} ;

Listing 5.1: Modi�ed ethersrv interface

The drivers have to register a couple of callback functions with the ethersrv
library. Queue drivers have to provide functions to send a packet, register
receive bu�ers and clean up sent packages. While the card driver has to provide
functions to initialize new queues and register di�erent �lter types (roughly
correspond to the functions in the Flounder interface).

5.1.3 netd

netd has been adapted to the new ethersrv interfaces, and now performs the
additional task of assigning queues to appplications. To that end the Flounder
interface to netd has been modi�ed to include queue id parameters for the meth-
ods modifying �lters, and a method to allocate a new queue for an application.

5.1.4 Critical path

In regard to the critical path not much changes, at least as long as only one
application is observed. Since the applications no longer communicate all with
the same driver, but with multiple queue driver instances, those queue drivers
can work independent from one another on di�erent cores if desired. This allows
for better isolation, but could also improve performance since each application
can have a queue driver running "near it" in the NUMA sense.

Some optimizations for the bulk transfer interfaces on both the application
side (in lwip library) and on the driver side (in the ethersrv library) have been
implemented by Pravin Shinde to reduce the time spent in the code there,
since the pro�ling revealed that a signi�cant amount of time is spent there.
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Those optimizations include the removal of unnecessary mfence instructions, the
removal of unnecessary sanity checks, and some overly conservative code that
updated local copies of the queue pointers more often than necessary. Sending
of packets on the wire has also been modi�ed to allow packets to be sent more
e�ciently, i.e. without initializing temporary data structures that are only used
to communicate with the driver, instead the necessary information is extracted
directly from the bulk transfer bu�er.

5.2 Problems during implementation

This section presents the most important problems faced during the implemen-
tation phase and attempted solutions if they were addressed.

5.2.1 Initialization bug in driver

From the �rst version of the driver one problem has always occurred in con-
nections with the initialization of the card. The network controller only starts
transmitting and receiving data after a delay of multiple seconds, even though
the status registers indicate that the link is up and ready. Failure to send
those packets is not detected by the driver since they are consumed successfully.
Sometimes the initialization does not succeed at all, and the driver hangs forever
without detecting the problem. The cause of this problem is not known to me,
but somehow in the current version it seems to work quite reliably after about
10 seconds. Once the �rst packet is sent or received, everything works.

5.2.2 ARP �lters

ARP resolution caused another problem I found quite late in process of imple-
menting the design described above. In the original implementation incoming
ARP packets were simply forwarded to all applications in the driver code. This is
however not easily achieved in with the current design, since no instance knows
all bu�ers, and especially if some of the additional features mentioned below
such as mapping the hardware receive queue directly into the application space
read-only as an optimization, it gets even harder to do. So at the moment a
workaround is used, instead of doing ARP queries directly the applications send
a request to netd which then takes care of resolving the IP address to a MAC
address, this result is then cached in the lwip ARP cache of the application.

5.3 Limitations

5.3.1 Polling

As already mentioned above the driver does currently not use interrupts since
Barrel�sh does not support MSI-X yet. In a latency critical application that
is probably the right thing, especially if the application is not very CPU inten-
sive or if the queue driver can run on a dedicated core. But in other settings
interrupts (maybe even with interrupt throttling) might be desirable.
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5.3.2 Scarceness of hardware resources

The current implementation of the network stack only supports hardware �l-
tering. Which is not appropriate for all applications since there is a limited
number of hardware queues and �lters available, and non-performance criti-
cal applications can just as well be served using software �ltering, to leave the
hardware resources available to the devices that really need it. The other reason
for reintroducing software �ltering is to support network controllers that don't
support sophisticated hardware �ltering (such as for example the e1000 cards),
they are not supported in the current implementation. This has no in�uence on
the latency results for applications using hardware �ltering.

A combination of software and hardware �lters might also become necessary
if additional �lter types are required that are not supported by hardware. In
the case of clients that receive packets from both software �ltered and hardware
queues the simplest decision is probably to use multiple bulk transfer bu�ers, one
for communication with the hardware queue and another one for con�guration
of the software queue.

One optimization over simply using one default queue for software �ltering
would be to distribute the packets into multiple queues using receive side scaling,
which can also be used with some other network cards such as some e1000 cards.
This would most likely improve performance in heavy workloads.

5.3.3 Pause feature for �lters

The pause feature for �lters that is used in the original Barrel�sh network stack
is used to emulate some POSIX behaviour in connection with fork as mentioned
before. This feature is currently not implemented, and is also not so straight
forward to implement, especially the bu�ering part until the child is ready,
redirecting the TCP connection after that to the correct queue should not be a
problem.

One possibility could be to register initialize the queue for the child process,
including the bulk transfer bu�er populated with receive bu�ers and registering
a �lter for the TCP connection in the parent process and then passing it on
to the child process. This would remove the need for explicit bu�ering of the
packets in the ethersrv library.

5.4 Additional features and optimizations not im-

plemented

Some features that might help to reduce latency were not implemented, either
because of technical problems or just because not enough time was available.

5.4.1 Direct cache access

The purpose of direct cache access has been discussed above. While it would
probably help to reduce the latency, especially on the receive side, direct cache
access could not be implemented within the given time frame, because of lack-
ing support from Barrel�sh (or maybe just the BIOS). The network controller
signals that DCA is not supported, and since Linux has a driver for it I suppose
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some parts of it have to be initialized by the operating system. I was not able
to �nd documentation on how to implement it.

5.4.2 Read-only map of hardware queue in application

As already discussed, the Intel 82599 controller is not really adequately equipped
to allow hardware queues to be mapped directly into applications to reduce
communication latency, since this would allow the application to add arbitrary
physical addresses to the descriptor rings and thus circumvent memory protec-
tion. But a restricted mapping can help to reduce overhead, that is if the receive
queue is mapped directly into application space allowing only read access to it.
This way the application can detect that a new packet has arrived just by look-
ing at the memory region. To add new receive bu�ers there is still a trusted
party (driver) required, but those requests can be batched, so as to amortise the
communication overhead. A similar optimization can be used with the transmit
queue to detect transmitted packet bu�ers, although here the gain is probably
less noticeable since this event is not on the critical path and transmit requests
can usually not be batched in a low latency setting.
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Chapter 6

Evaluation

The following section presents a lot of benchmarking and pro�ling data to illus-
trate how the network stack performs before and after optimization, and also
to show how di�erent optimizations a�ect the latency.

6.1 Comparison with Linux

In comparison to Linux the original Barrel�sh network stack does not look too
bad for small packets, but for large packets the latency increases really bad, but
as discussed above this is to be expected since the receive bu�ers are mapped
non cacheable. In Linux there are almost no variations at all on this machine
for di�erent packet sizes.
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6.2 Optimizations

In the following section the implemented optimizations and their impact on
latency will be measured and analyzed. The measurements were taken using
the same procedure as described above, using 64 byte TCP packets we started
out with a latency of 76.6µs, echoserver running on gottardo and net_latency
running on sbrinz1.
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6.2.1 E�ect of CPU cache on latency

The results presented bellow contain the same phases for packet transport dis-
played in tables 4.1 and 4.2. Those are the results after the descriptor rings and
receive bu�ers in the driver have been marked as cacheable and �ushing the
packet contents has been reduced to a mfence instruction, the round trip time
is reduced by 11.4µs to 65.2µs. First the transmit phases that lasts a total of
7.4µs (2µs less than before):

42% 3.13µs Remove packet from consumer queue
31% 2.32µs Context switch to driver for noti�cation
14% 1.07µs Protocol processing in lwip
11% 0.78µs Enqueue packet in consumer queue
2% 0.12µs Flush packet content from cache

Now the receive part takes 11.2µs, here 3.6µs were saved:

58% 6.49µs Enqueue packet in consumer queue
14% 1.51µs lwip protocol processing
12% 1.36µs Context switch to application for noti�cation
8% 0.86µs Apply �lters to select destination bu�er
5% 0.58µs Remove packet from consumer queue
3% 0.37µs Copy packet into application bu�er

Those results are about what was expected, receive bene�ted in the copy
and �lter operations that are really expensive without caching, while on the
transmit side only the �ushing of packet contents takes less time, the rest stays
more or less the same.

6.2.2 E�ect of bulk transfer optimizations

After the cache problem was �xed, the next thing we took a closer look at was
the bulk transfer interface code. After some pro�ling and a lot of experimenting
the overall round trip time reduced to 46.4µs, an improvement of no less than
18.8µs. Transmit reduces to 5.5µs, an additional 1.9µs saved:

48% 2.64µs Context switch to driver for noti�cation
20% 1.12µs Remove packet from consumer queue
18% 0.96µs Protocol processing in lwip
12% 0.66µs Enqueue packet in consumer queue
2% 0.11µs Flush packet content from cache

On the receive side too we're able to shave o� another 4.3µs, resulting in
6.9µs for the software receive side:

29% 1.99µs Enqueue packet in consumer queue
22% 1.55µs lwip protocol processing
20% 1.36µs Context switch to application for noti�cation
15% 1.00µs Apply �lters to select destination bu�er
9% 0.61µs Remove packet from consumer queue
5% 0.37µs Copy packet into application bu�er
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6.2.3 E�ect of multiple hardware queues

The last optimization caused the most work, redesigning the network stack and
using multiple hardware queues. This also caused some internal data structures
in the ethersrv library to become simpler, which could explain some of the non
obvious performance gains.

Here the combination of the bug requiring that all network processes run
on the same core and the fact that polling is used caused some noise in the
benchmark (multiple queue drivers running on same core, both waiting until
their timeslice gets taken away), therefore not the average results are used, but
the median of the results, to get more meaningful results. Anyway using the
new network stack architecture we arrive at a �nal round trip time of 36.6µs,
another 9.8µs saved. Not unexpected transmit did not vary at all and stayed at
5.5µs, while on the receive side 1.5µs were saved, that corresponds more or less
to �ltering and copying, resulting in 5.4µs.

6.2.4 Summary

The following graph provides a before after comparison, displaying both the
original and optimized Barrel�sh results, as well as the Linux result as a basis
for comparison:
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6.3 In�uence of Ethernet switch

As pointed out by Rumble et al. switches can introduce quite some latency. To
measure the latency introduced by the switch the machines sbrinz1 and ziger1
were connected directly, and then the same TCP benchmark used for the Linux
results above was used to get numbers for multiple packet sizes. As it turns
out the latency introduced is indeed signi�cant, for 64 bytes of TCP payload an
additional latency of 6.6µs is introduced:
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Since this latency is introduced independent of the endpoints, this leaves us
with an e�ective machine to machine latency of 30.0µs.
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Chapter 7

Conclusion

As it turns out the latency can be reduced a lot by looking at the software
side of network packet processing. Using some optimizations, architectural re-
design and assistance from the network controller, the total round trip time for
a 64 byte TCP packet could be reduced to less than 50% from the �rst sim-
ple implementation. Also some of the optimizations were independent from the
82599 network controller, meaning that other drivers also bene�t. The archi-
tectural redesign also allows other drivers supporting multiple hardware queues
to be plugged in with relative ease. We also saw some limitations of the 82599
controller that make it not ideal for an exokernel environment.

7.1 Future work

Some work will need to be invested to remove the limitations discussed in the
implementation chapter, to make the whole architecture useful in practice. Also
some further optimizations that were not implemented were described. In par-
ticular the optimization for mapping the receive queue read only into applica-
tion memory should save quite some time, a rough estimate using the results
presented in the previous chapter suggests that about 4µs are spent on bulk
transfer, IDC and context for receive, if that kind of time is saved on both
sides, this could reduce the round trip time by as much as 8µs. Reducing IDC
overhead could also help lowering network latency, but probably not as much
as other approaches.

Another area where some research would help is the interface between net-
work controller and software, numerous user level networking approaches [5] [23]
[15] should provide a reasonable starting point. But in connection with network
engines on the CPU die onloading the demultiplexing and more features onto a
general purpose core could also be interesting.
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